On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data

نویسندگان

  • Andreas Holzinger
  • Christof Stocker
  • Manuel Bruschi
  • Andreas Auinger
  • Hugo Silva
  • Hugo Gamboa
  • Ana L. N. Fred
چکیده

Information entropy as a universal and fascinating statistical concept is helpful for numerous problems in the computational sciences. Approximate entropy (ApEn), introduced by Pincus (1991), can classify complex data in diverse settings. The capability to measure complexity from a relatively small amount of data holds promise for applications of ApEn in a variety of contexts. In this work we apply ApEn to ECG data. The data was acquired through an experiment to evaluate human concentration from 26 individuals. The challenge is to gain knowledge with only small ApEn windows while avoiding modeling artifacts. Our central hypothesis is that for intra subject information (e.g. tendencies, fluctuations) the ApEn window size can be significantly smaller than for inter subject classification. For that purpose we propose the term truthfulness to complement the statistical validity of a distribution, and show how truthfulness is able to establish trust in their local properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG

Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...

متن کامل

Survey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery

this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012